Zero and Finite Temperature Quantum Simulations Powered by Quantum Magic (2024)

We introduce a quantum information theory-inspired method to improve the characterization of many-body Hamiltonians on near-term quantum devices. We design a new class of similarity transformations that, when applied as a preprocessing step, can substantially simplify a Hamiltonian for subsequent analysis on quantum hardware. By design, these transformations can be identified and applied efficiently using purely classical resources. In practice, these transformations allow us to shorten requisite physical circuit-depths, overcoming constraints imposed by imperfect near-term hardware. Importantly, the quality of our transformations is $tunable$: we define a 'ladder' of transformations that yields increasingly simple Hamiltonians at the cost of more classical computation. Using quantum chemistry as a benchmark application, we demonstrate that our protocol leads to significant performance improvements for zero and finite temperature free energy calculations on both digital and analog quantum hardware. Specifically, our energy estimates not only outperform traditional Hartree-Fock solutions, but this performance gap also consistently widens as we tune up the quality of our transformations. In short, our quantum information-based approach opens promising new pathways to realizing useful and feasible quantum chemistry algorithms on near-term hardware.

[1] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A, 70: 052328, Nov. 2004. 10.1103/​PhysRevA.70.052328.
https:/​/​doi.org/​10.1103/​PhysRevA.70.052328

[2] C. S. Adams, J. D. Pritchard, and J. P. Shaffer. Rydberg atom quantum technologies. Journal of Physics B: Atomic, Molecular and Optical Physics, 53 (1): 012002, Dec. 2019. 10.1088/​1361-6455/​ab52ef.
https:/​/​doi.org/​10.1088/​1361-6455/​ab52ef

[3] S. Bravyi and D. Gosset. Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. Phys. Rev. Lett., 116: 250501, June 2016. 10.1103/​PhysRevLett.116.250501.
https:/​/​doi.org/​10.1103/​PhysRevLett.116.250501

[4] S. Bravyi, D. P. DiVincenzo, and D. Loss. Schrieffer–Wolff transformation for quantum many-body systems. Annals of Physics, 326 (10): 2793–2826, Oct. 2011. ISSN 00034916. 10.1016/​j.aop.2011.06.004.
https:/​/​doi.org/​10.1016/​j.aop.2011.06.004

[5] S. Bravyi, D. Browne, P. Calpin, E. Campbell, D. Gosset, and M. Howard. Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum, 3: 181, Sept. 2019. 10.22331/​q-2019-09-02-181.
https:/​/​doi.org/​10.22331/​q-2019-09-02-181

[6] S. Bravyi, D. Gosset, and Y. Liu. How to Simulate Quantum Measurement without Computing Marginals. Phys. Rev. Lett., 128: 220503, June 2022. 10.1103/​PhysRevLett.128.220503.
https:/​/​doi.org/​10.1103/​PhysRevLett.128.220503

[7] B. J. Brown, D. Loss, J. K. Pachos, C. N. Self, and J. R. Wootton. Quantum memories at finite temperature. Rev. Mod. Phys., 88: 045005, Nov. 2016. 10.1103/​RevModPhys.88.045005.
https:/​/​doi.org/​10.1103/​RevModPhys.88.045005

[8] L. S. Cederbaum, J. Schirmer, and H. D. Meyer. Block diagonalisation of Hermitian matrices. Journal of Physics A: Mathematical and General, 22 (13): 2427–2439, July 1989. ISSN 0305-4470, 1361-6447. 10.1088/​0305-4470/​22/​13/​035.
https:/​/​doi.org/​10.1088/​0305-4470/​22/​13/​035

[9] A. N. Chowdhury And and R. D. Somma. Quantum algorithms for Gibbs sampling and hitting-time estimation. Quantum Information and Computation, 17 (1&2): 41–64, Jan. 2017. ISSN 15337146, 15337146. 10.26421/​QIC17.1-2-3.
https:/​/​doi.org/​10.26421/​QIC17.1-2-3

[10] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete. Matrix product states and projected entangled pair states: Concepts, symmetries, theorems. Reviews of Modern Physics, 93 (4), Dec. 2021. 10.1103/​revmodphys.93.045003.
https:/​/​doi.org/​10.1103/​revmodphys.93.045003

[11] C. Coulson and I. Fischer. Xxxiv. notes on the molecular orbital treatment of the hydrogen molecule. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 40 (303): 386–393, 1949. 10.1080/​14786444908521726. URL https:/​/​doi.org/​10.1080/​14786444908521726.
https:/​/​doi.org/​10.1080/​14786444908521726

[12] J. F. Donoghue, B. R. Holstein, and R. Robinett. Quantum electrodynamics at finite temperature. Annals of Physics, 164 (2): 233–276, 1985. ISSN 0003-4916. https:/​/​doi.org/​10.1016/​0003-4916(85)90016-8.
https:/​/​doi.org/​10.1016/​0003-4916(85)90016-8

[13] C. M. Duque, H.-Y. Hu, Y.-Z. You, V. Khemani, R. Verresen, and R. Vasseur. Topological and symmetry-enriched random quantum critical points. Phys. Rev. B, 103: L100207, Mar. 2021. 10.1103/​PhysRevB.103.L100207.
https:/​/​doi.org/​10.1103/​PhysRevB.103.L100207

[14] J. Eisert and M. B. Plenio. A comparison of entanglement measures. Journal of Modern Optics, 46 (1): 145–154, Jan. 1999. ISSN 1362-3044. 10.1080/​09500349908231260.
https:/​/​doi.org/​10.1080/​09500349908231260

[15] R. Frostig, M. Johnson, and C. Leary. Compiling machine learning programs via high-level tracing. 2018. URL https:/​/​mlsys.org/​Conferences/​doc/​2018/​146.pdf.
https:/​/​mlsys.org/​Conferences/​doc/​2018/​146.pdf

[16] N. Haldolaarachchige, A. B. Karki, W. A. Phelan, Y. M. Xiong, R. Jin, J. Y. Chan, S. Stadler, and D. P. Young. Effect of chemical doping on the thermoelectric properties of FeGa3. Journal of Applied Physics, 109 (10), May 2011. ISSN 1089-7550. 10.1063/​1.3585843.
https:/​/​doi.org/​10.1063/​1.3585843

[17] M. Horodecki, P. Horodecki, and R. Horodecki. Separability of mixed states: necessary and sufficient conditions. Physics Letters A, 223 (1–2): 1–8, Nov. 1996. ISSN 0375-9601. 10.1016/​s0375-9601(96)00706-2. URL http:/​/​dx.doi.org/​10.1016/​S0375-9601(96)00706-2.
https:/​/​doi.org/​10.1016/​s0375-9601(96)00706-2

[18] M. Howard and E. Campbell. Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing. Physical Review Letters, 118 (9), Mar. 2017. ISSN 1079-7114. 10.1103/​physrevlett.118.090501.
https:/​/​doi.org/​10.1103/​physrevlett.118.090501

[19] H.-Y. Hu, C. Zhao, T. L. Patti, A. Gu, Y.-Z. You, and S. Yelin. PyClifford: Efficient Clifford Circuit Simulation in Python. In preparation, 2023.

[20] P. Jordan and E. P. Wigner. About the Pauli exclusion principle. Z. Phys., 47: 631–651, 1928. 10.1007/​BF01331938.
https:/​/​doi.org/​10.1007/​BF01331938

[21] C. Kang, N. P. Bauman, S. Krishnamoorthy, and K. Kowalski. Optimized Quantum Phase Estimation for Simulating Electronic States in Various Energy Regimes. Journal of Chemical Theory and Computation, 18 (11): 6567–6576, Nov. 2022. 10.1021/​acs.jctc.2c00577.
https:/​/​doi.org/​10.1021/​acs.jctc.2c00577

[22] V. Khemani, F. Pollmann, and S. L. Sondhi. Obtaining Highly Excited Eigenstates of Many-Body Localized Hamiltonians by the Density Matrix Renormalization Group Approach. Phys. Rev. Lett., 116: 247204, June 2016. 10.1103/​PhysRevLett.116.247204.
https:/​/​doi.org/​10.1103/​PhysRevLett.116.247204

[23] L. Leone, S. F. Oliviero, and A. Hamma. Stabilizer Rényi Entropy. Physical Review Letters, 128 (5), Feb. 2022. 10.1103/​physrevlett.128.050402.
https:/​/​doi.org/​10.1103/​physrevlett.128.050402

[24] S. P. Lim and D. N. Sheng. Many-body localization and transition by density matrix renormalization group and exact diagonalization studies. Phys. Rev. B, 94: 045111, July 2016. 10.1103/​PhysRevB.94.045111.
https:/​/​doi.org/​10.1103/​PhysRevB.94.045111

[25] P. A. Limacher, P. W. Ayers, P. A. Johnson, S. De Baerdemacker, D. Van Neck, and P. Bultinck. A new mean-field method suitable for strongly correlated electrons: Computationally facile antisymmetric products of nonorthogonal geminals. Journal of chemical theory and computation, 9 (3): 1394—1401, March 2013. ISSN 1549-9618. 10.1021/​ct300902c. URL https:/​/​doi.org/​10.1021/​ct300902c.
https:/​/​doi.org/​10.1021/​ct300902c

[26] J.-G. Liu, L. Mao, P. Zhang, and L. Wang. Solving quantum statistical mechanics with variational autoregressive networks and quantum circuits. Machine Learning: Science and Technology, 2 (2): 025011, Feb. 2021. 10.1088/​2632-2153/​aba19d.
https:/​/​doi.org/​10.1088/​2632-2153/​aba19d

[27] S. Masot-Llima and A. Garcia-Saez. Stabilizer tensor networks: universal quantum simulator on a basis of stabilizer states. arXiv/​quant-ph, 2024. 10.48550/​arXiv.2403.08724.
https:/​/​doi.org/​10.48550/​arXiv.2403.08724

[28] J. R. McClean, N. C. Rubin, K. J. Sung, I. D. Kivlichan, X. Bonet-Monroig, Y. Cao, C. Dai, E. S. Fried, C. Gidney, B. Gimby, P. Gokhale, T. Häner, T. Hardikar, V. Havlíček, O. Higgott, C. Huang, J. Izaac, Z. Jiang, X. Liu, S. McArdle, M. Neeley, T. O’Brien, B. O’Gorman, I. Ozfidan, M. D. Radin, J. Romero, N. P. D. Sawaya, B. Senjean, K. Setia, S. Sim, D. S. Steiger, M. Steudtner, Q. Sun, W. Sun, D. Wang, F. Zhang, and R. Babbush. Openfermion: the electronic structure package for quantum computers. Quantum Science and Technology, 5 (3): 034014, jun 2020. 10.1088/​2058-9565/​ab8ebc. URL https:/​/​dx.doi.org/​10.1088/​2058-9565/​ab8ebc.
https:/​/​doi.org/​10.1088/​2058-9565/​ab8ebc

[29] G. Nebe, E. M. Rains, and N. J. Sloane. Real and Complex Clifford Groups, pages 171–192. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-30731-0. 10.1007/​3-540-30731-1_6.
https:/​/​doi.org/​10.1007/​3-540-30731-1_6

[30] A. Peres. Separability Criterion for Density Matrices. Physical Review Letters, 77 (8): 1413–1415, Aug. 1996. ISSN 1079-7114. 10.1103/​physrevlett.77.1413.
https:/​/​doi.org/​10.1103/​physrevlett.77.1413

[31] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5 (1): 4213, 2014. 10.1038/​ncomms5213.
https:/​/​doi.org/​10.1038/​ncomms5213

[32] C. Powers, L. Bassman Oftelie, D. Camps, and W. A. De Jong. Exploring finite temperature properties of materials with quantum computers. Scientific Reports, 13 (1): 1986, Feb. 2023. ISSN 2045-2322. 10.1038/​s41598-023-28317-5.
https:/​/​doi.org/​10.1038/​s41598-023-28317-5

[33] G. Roussy. An approximate block diagonalization for hermitian matrices as an improvement on successive Van Vleck transformations. Molecular Physics, 26 (5): 1085–1092, Nov. 1973. ISSN 0026-8976, 1362-3028. 10.1080/​00268977300102311.
https:/​/​doi.org/​10.1080/​00268977300102311

[34] U. Schollwöck. The density-matrix renormalization group. Reviews of Modern Physics, 77 (1): 259–315, Apr. 2005. ISSN 1539-0756. 10.1103/​revmodphys.77.259.
https:/​/​doi.org/​10.1103/​revmodphys.77.259

[35] J. R. Seddon and E. T. Campbell. Quantifying magic for multi-qubit operations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475 (2227): 20190251, July 2019. ISSN 1471-2946. 10.1098/​rspa.2019.0251.
https:/​/​doi.org/​10.1098/​rspa.2019.0251

[36] J. T. Seeley, M. J. Richard, and P. J. Love. The Bravyi-Kitaev transformation for quantum computation of electronic structure. The Journal of Chemical Physics, 137 (22), Dec. 2012. ISSN 1089-7690. 10.1063/​1.4768229.
https:/​/​doi.org/​10.1063/​1.4768229

[37] K. Slagle, Y.-Z. You, and C. Xu. Disordered XYZ spin chain simulations using the spectrum bifurcation renormalization group. Phys. Rev. B, 94: 014205, July 2016. 10.1103/​PhysRevB.94.014205.
https:/​/​doi.org/​10.1103/​PhysRevB.94.014205

[38] G. Subramanian Ravi, P. Gokhale, Y. Ding, W. M. Kirby, K. N. Smith, J. M. Baker, P. J. Love, H. Hoffmann, K. R. Brown, and F. T. Chong. CAFQA: A classical simulation bootstrap for variational quantum algorithms. arXiv e-prints, art. arXiv:2202.12924, Feb. 2022. 10.48550/​arXiv.2202.12924.
https:/​/​doi.org/​10.48550/​arXiv.2202.12924
arXiv:2202.12924

[39] S.-N. Sun, M. Motta, R. N. Tazhigulov, A. T. Tan, G. K.-L. Chan, and A. J. Minnich. Quantum Computation of Finite-Temperature Static and Dynamical Properties of Spin Systems Using Quantum Imaginary Time Evolution. PRX Quantum, 2 (1), Feb. 2021. ISSN 2691-3399. 10.1103/​prxquantum.2.010317.
https:/​/​doi.org/​10.1103/​prxquantum.2.010317

[40] Y. Takahashi and H. Umezawa. Thermo Field Dynamics. International Journal of Modern Physics B, 10 (13n14): 1755–1805, June 1996. ISSN 0217-9792, 1793-6578. 10.1142/​S0217979296000817.
https:/​/​doi.org/​10.1142/​S0217979296000817

[41] A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean, R. Babbush, P. V. Coveney, F. Mintert, F. Wilhelm, and P. J. Love. The Bravyi–Kitaev transformation: Properties and applications. International Journal of Quantum Chemistry, 115 (19): 1431–1441, 2015. 10.1002/​qua.24969.
https:/​/​doi.org/​10.1002/​qua.24969

[42] V. Verteletskyi, T.-C. Yen, and A. F. Izmaylov. Measurement optimization in the variational quantum eigensolver using a minimum clique cover. The Journal of Chemical Physics, 152 (12), Mar. 2020. 10.1063/​1.5141458.
https:/​/​doi.org/​10.1063/​1.5141458

[43] Z. Webb. The Clifford group forms a unitary 3-design. Quantum Information and Computation, 16 (15&16): 1379–1400, Nov. 2016. ISSN 15337146, 15337146. 10.26421/​QIC16.15-16-8.
https:/​/​doi.org/​10.26421/​QIC16.15-16-8

[44] S. R. White. Numerical canonical transformation approach to quantum many-body problems. The Journal of Chemical Physics, 117 (16): 7472–7482, Oct. 2002. ISSN 0021-9606, 1089-7690. 10.1063/​1.1508370.
https:/​/​doi.org/​10.1063/​1.1508370

[45] J. Wu and T. H. Hsieh. Variational Thermal Quantum Simulation via Thermofield Double States. Physical Review Letters, 123 (22), Nov. 2019. 10.1103/​physrevlett.123.220502.
https:/​/​doi.org/​10.1103/​physrevlett.123.220502

[46] Y.-Z. You, X.-L. Qi, and C. Xu. Entanglement holographic mapping of many-body localized system by spectrum bifurcation renormalization group. Phys. Rev. B, 93: 104205, Mar. 2016. 10.1103/​PhysRevB.93.104205.
https:/​/​doi.org/​10.1103/​PhysRevB.93.104205

[47] X. Yu, D. Pekker, and B. K. Clark. Bulk Geometry of the Many Body Localized Phase from Wilson-Wegner Flow. arXiv e-prints, art. arXiv:1909.11097, Sept. 2019. 10.48550/​arXiv.1909.11097.
https:/​/​doi.org/​10.48550/​arXiv.1909.11097
arXiv:1909.11097

[48] X. Yuan, S. Endo, Q. Zhao, Y. Li, and S. C. Benjamin. Theory of variational quantum simulation. Quantum, 3: 191, Oct. 2019. ISSN 2521-327X. 10.22331/​q-2019-10-07-191.
https:/​/​doi.org/​10.22331/​q-2019-10-07-191

[49] S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and H. Yao. Differentiable quantum architecture search. Quantum Science and Technology, 7 (4): 045023, Aug. 2022. 10.1088/​2058-9565/​ac87cd.
https:/​/​doi.org/​10.1088/​2058-9565/​ac87cd

[50] S.-X. Zhang, J. Allco*ck, Z.-Q. Wan, S. Liu, J. Sun, H. Yu, X.-H. Yang, J. Qiu, Z. Ye, Y.-Q. Chen, C.-K. Lee, Y.-C. Zheng, S.-K. Jian, H. Yao, C.-Y. Hsieh, and S. Zhang. TensorCircuit: a Quantum Software Framework for the NISQ Era. Quantum, 7: 912, Feb. 2023. ISSN 2521-327X. 10.22331/​q-2023-02-02-912.
https:/​/​doi.org/​10.22331/​q-2023-02-02-912

Zero and Finite Temperature Quantum Simulations Powered by Quantum Magic (2024)
Top Articles
Latest Posts
Article information

Author: Allyn Kozey

Last Updated:

Views: 6166

Rating: 4.2 / 5 (43 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Allyn Kozey

Birthday: 1993-12-21

Address: Suite 454 40343 Larson Union, Port Melia, TX 16164

Phone: +2456904400762

Job: Investor Administrator

Hobby: Sketching, Puzzles, Pet, Mountaineering, Skydiving, Dowsing, Sports

Introduction: My name is Allyn Kozey, I am a outstanding, colorful, adventurous, encouraging, zealous, tender, helpful person who loves writing and wants to share my knowledge and understanding with you.